

Financial-grade API (FAPI) Profiles
Comparison of Available FAPI Profiles and Recommendations
for New Markets Looking to Implement FAPI as their Security
Profile

Prepared by: Chris Michael, Freddi Gyara, Joseph Heenan, Torsten Lodderstedt, Dima
Postnikov, and Dave Tonge
Version: 1.0 - 27 Jul 2022
Classification: Public

Financial-grade API (FAPI) Profiles 2

1. Introduction

1.1 Background

The Financial Grade API (FAPI) profile is a layer on top of OAuth 2.0 and OpenID Connect which
“hardens” OAuth / OpenID Connect by specifying a set of constraints - called a profile - that limit or
enforce the alternatives provided by OAuth / OIDC.

FAPI is now being used as the basis for almost all open banking and open finance standards around
the world, including the UK (OBIE), Brazil Open Finance, Australia CDR, Bahrain Open Banking, FDX
and SAMA (KSA).

However, some of these standards (e.g., UK/OBIE) are based on profiles/versions that are several
years old and thus do not benefit from improvements and enhancements in later versions.

Furthermore, most (if not all) of these standards are using a slightly different profile/version, which is
not in the best interests of global interoperability.

1.2 Available FAPI profiles

The following are the FAPI profiles which are either in use by multiple implementers or which are
being actively developed by the OpenID Foundation’s FAPI working group:

● FAPI 1 Implementers Draft 6 (OBIE Profile): https://openid.net/specs/openid-financial-api-
part-2-wd-06.html

● FAPI 1 Baseline: https://openid.net/specs/openid-financial-api-part-1-1_0.html

● FAPI 1 Advanced: https://openid.net/specs/openid-financial-api-part-2-1_0.html

● Brazil Security Standard: https://openbanking-brasil.github.io/specs-seguranca/open-banking-
brasil-financial-api-1_ID3-ptbr.html

● FAPI 2: https://openid.net/specs/fapi-2_0-baseline-01.html

● FAPI 2 Message Signing:
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Advanced_Profile.md

1.3 Purpose of this paper

We will not regurgitate FAPI in its entirety here, rather we will focus on the following areas where FAPI
enhances security, and provide recommendations for each area:

1. Choice of cryptographic algorithms

2. Transport security

3. Client authentication method

4. Parameter passing for authorization grants

5. Response validation

Financial-grade API (FAPI) Profiles 3

We will then set out a number of different FAPI profiles and assess the relative suitability of each for
any new/emerging open banking/finance standard.

This paper is thus designed to provide clear recommendations, especially for any new/emerging open
finance standard or ecosystem, as to which profile/version of FAPI should be used.

2. Considerations and Recommendations

2.1 Choice of cryptographic algorithms

All versions of FAPI require the use of asymmetric cryptographic algorithms wherever anything is
signed or encrypted.

Of note, is the exclusion of RS256 as a safe algorithm. Only the early drafts of the OBIE standard
allowed for this as there was insufficient library support for the safer PS256 algorithm at that time.

In addition to identifying safe algorithms, FAPI 2 adds reference to the much more comprehensive
RFC8725 / BCP225 - JSON Web Token Best Current Practices.

Recommendation 1: The specification for safe cryptographic algorithms in FAPI 1 Advanced
should be made mandatory.

Recommendation 2: Adherence to RFC8725 / BCP225 - JSON Web Token Best Current Practices,
is recommended but should remain optional for now, but should be made mandatory as/when
there is wider support from vendors and implementers.

2.2 Transport security

FAPI 1 allows two methods of client authentication - private-key-jwt and tls-client-auth. Both methods
require the client to present a transport certificate so that the authorization server can issue sender-
constrained access tokens and use mtls (RFC 8705) for ensuring access tokens are certificate
bound.

FAPI 2 has a comprehensive range of network layer protections (e.g., requiring DNSSEC etc) over and
above the use of mTLS or Demonstration of Proof of Possession (DPoP).

Recommendation 3: Adhere to the recommendations in FAPI1 Advanced on using mTLS [RFC
8705] for certificate-bound access tokens.

2.3 Client authentication method

One of the largest improvements of OpenID Connect over plain OAuth 2.0 is the ability to provide an
extensible set of ways for an OIDC Client to authenticate itself with the authorization server.

This is covered in Section 9 of the OpenID Connect specification with references to RFCs for each of
the specific methods.

Financial-grade API (FAPI) Profiles 4

All FAPI specifications require the use of either tls_client_auth or private_key_jwt as authentication
methods, the general principle being that client authentication should rely on an asymmetric
algorithm.

Recommendation 4: Adhere to the recommendations in FAPI 1 Advanced and FAPI 2.

2.4 Parameter passing for authorization grants

In an OAuth 2.0 authorization code grant (and even in hybrid flows) the OAuth 2.0 client constructs a
call to the authorization server URL with some query parameters.

This is then sent on to the user agent of the resource owner as a redirect. The user agent
(browser/mobile app) follows the redirect in turn, eventually hitting the authorization server.

Since this interaction takes place over an unsecured “front channel” (through the user’s browser) a
number of security issues are present:

● A man-in-the-middle attacker may have the opportunity to modify the query parameters

● An attacker pretending to be the client may craft a call to the authorization server and get hold
of the response

● If the query parameters are sensitive in nature, these are publicly readable as they travel
unencrypted over the internet.

The same problems are repeated for responses sent by the authorization server as the response
takes the shape of a redirect URI which passes through the end-user’s browser and then on to the
client.

The solutions available through various profiles are:

● use of signed request object (as per Section 6.1 of the OIDC specification)

● use of request object by reference (as per Section 6.3 of the OIDC specification)

● use of PAR (RFC-9126), see below

Pushed Authorization Requests (PAR) offers a number of advantages over the other two methods:

● PAR provides a standardised means for a client to create the request object.

● For PAR requests, the authorization server authenticates the client using the client
authentication method the client is registered with providing a high degree of security.

● PAR prevents the contents of the request being passed via the browser potentially providing
privacy benefits

● The current draft of FAPI 2 mandates the use of PAR with client-authentication.

Recommendation 5: PAR should be mandated as the method for parameter passing for
authorization grants.

Financial-grade API (FAPI) Profiles 5

Recommendation 6: The security profile should adopt the profile rules defined by FAPI 2 for PAR
to simplify a future migration to FAPI 2.

2.5 Response validation
The simplest method for enforcing validations in responses is by enforcing the use of code
id_token as the response type. This forces the authorization server to issue an id_token along with
the authorization code.

● The id_token is signed by the authorization server which ensures that it cannot be tampered
with.

● The id_token contains hashed values of part of the state and code parameters (s_hash
and c_hash) which can be used to validate these and ensure that they have not been
tampered with.

JWT Secured Authorization Response Mode (JARM) provides a means for an authorization server to
respond to an authorization code grant with a signed JWT as its response. This ensures the client
that the response has not been tampered with by a man-in-the-middle.

The JWT may be encrypted, signed or both, allowing for secrecy of the authorization code that the
authorization server responds with.

The solutions available through various profiles are:

● use of bindings in id_token claims

● use of JARM

Recommendation 7: Adhere to the recommendations in FAPI 1 Advanced.

3. Comparison Between Profiles
For the purposes of this comparison, we will exclude the following profiles:

● FAPI 1 Baseline: This profile originated from an early segregation of “Read” and “Read-Write”
profiles. The Baseline profile is insufficient for our purposes, not least since no other
standards body or regulator has considered it due to the lack of functionality and detailed
definition.

● FAPI 2 Message Signing: This is still an early draft and has not reached sufficient maturity for
consideration at this stage.

Financial-grade API (FAPI) Profiles 6

The table below shows a comparison of the remaining profiles, with a summary, status and
implications for each:

PROFILE OBIE Profile Brazil Profile FAPI 1 Advanced FAPI 1 Advanced
with PAR

FAPI 2

Summary Arose from an
early draft of FAPI
1 before that was
finalised.

Includes a number
of ‘relaxations’ to
address lack of
support for
features in some
available products
at the time.

A derivative of
FAPI 1 Advanced.

Contains multiple
permitted
variations, which
does give
implementers
considerable
flexibility as to
which to use.

Developed off the
back of the OBIE
Profile.

Includes
additional
enhancements,
clarifications and
‘hardening’ to
address issues
seen during
implementations.

As stated, the
FAPI 1 Advanced
profile but with
mandatory
support for
Pushed
Authorization
Requests (PAR).

The Brazil Profile
is a superset of
this.

An evolution of
FAPI 1 Advanced
which adds
support for Private
Key, PAR and
JARM (as an
optional
extension).

Easier for
implementers to
understand and
designed to cater
for requirements
from new and
emerging
standards bodies
globally.

Includes a formal
attacker model.

Status of
implementations

Initially
implemented by
several UK
providers,
however all
instances should
have migrated to
FAPI 1 Advanced.

Not widely
implemented
outside the UK.

Mandated by the
BCB for all Open
Finance
implementations,
hence actively
used by the entire
Brazil Open
Finance
ecosystem.

However, multiple
variations have
now been
implemented with
little consistency.

Mandated for all
providers in
Bahrain.

Recommended for
the latest OBIE
standard.

Already
implemented by
several providers
in Brazil.

Although
proposed in
several roadmaps,
not yet formally
adopted by any
other standard
body.

Status of
conformance
suite

Available, but not
actively
maintained

Available and
actively
maintained

Available and
actively
maintained

Available and
actively
maintained

In development
but not yet
available as a final
published version.

Suitability for
new/emerging
standards

No longer
recommended for
implementations
since this was an
early draft which
is over 5 years old
and has been
superseded
multiple times.

While this profile
is fit-for-purpose
in principle, the
large number of
available options
is likely to result in
fragmentation
which will slow
down and limit
interoperability.

As a core profile,
this is fit for
purpose.

However,
recommendations
5 and 6 above
clearly set out the
benefits and
requirements of
PAR.

Meets all stated
requirements and
recommendations
above.

Also provides a
relatively simple
upgrade path for
implementers to
move to FAPI 2 at
a later stage.

Some providers
and relying parties
will be reluctant to
implement a
profile which is
still in draft.

The lack of a final
version (with a
final conformance
suite) could limit
the ability of any
regulator to
enforce
conformance.

Financial-grade API (FAPI) Profiles 7

4. Summary
FAPI 2 should be the recommended security profile for open API (e.g., open banking/finance)
standards and ecosystems, as it meets all the recommendations in this paper.

However, there is a reluctance from many providers (e.g., banks and financial institutions) to
implement a draft specification, especially in a highly regulated sector. There is also a reluctance
from some regulators to implement a strong ‘regime’ of conformance and certification where either
the profile and/or conformance suite are still in draft.

Therefore, for ecosystems looking to implement open banking/finance before the end of 2022, we
recommend the following is adopted as the official security profile:

● FAPI 1 Advanced.

● Mandating the PAR option within FAPI 1 Advanced (to enable an easier migration path to FAPI
2) as the method for parameter passing for authorization grants.

This profile can simply be stated as ”FAPI 1 Advanced with PAR”, so there is no need for any
standards body or ecosystem to create any new FAPI profile or derivative.

The benefits of this approach are:

1. Providers and relying parties are implementing a security profile which is mature, well defined
and widely used, which will give all parties assurance.

2. There are a large number of vendor solutions supporting this profile, which will speed up
implementation for providers and relying parties.

3. There is a robust and comprehensive conformance suite, which will enable a much higher
level of conformance in any ecosystem.

4. Both the profile and the conformance suite are actively maintained and supported by the
OpenID Foundation, which significantly reduces the work for any other standards body in this
regard.

5. There is a relatively simple upgrade path to FAPI 2 for both providers and relying parties,
which makes any solution future proof and supports interoperability between ecosystems.

As soon as FAPI 2 and the corresponding conformance suite are finalised, and as soon as the OIDF
are able to validate and publish FAPI 2 certifications, then we recommend that standards bodies,
ecosystems and implementers migrate to FAPI 2.

