OpenlD Connect Conformance Profiles

OpenlD Connect Working Group, OpenlD Foundation

February 17, 2015

1. Introduction

This document defines a set of profiles of the OpenlD Connect specifications to be used for certifying implementations conforming to those
profiles. This document also lists the features that must be supported by implementations certified as conforming to each profile and lists the
tests used to test those features.

Many but not all of the features are able to be tested using the self-certification test procedures established by the OpenlID Connect working
group and the OpenlID Foundation. The testing procedures for these features are described in the Conformance Testing Procedures.

2. Overview of Conformance Profiles
This section briefly describes each of the currently defined conformance profiles. When we publish summaries of conformance self-certification
results, these will be the columns in the certification results table and implementations will be the rows.

This section describes only the initial certification profiles included in the phase 1 launch of the OpenID Certification program in April 2015.
Possible additional future profiles are described in a later section.

2.1 OpenlID Provider Conformance Profiles

2.1.1 Basic OpenID Provider

Basic OpenlID Providers implement the features needed by Basic Relying Parties — essentially, those that use the features described in the
OpenlID Connect Basic Client Implementer’s Guide 1.0 (although the actual profile will be based on OpenID Connect Core 1.0). These features
include the Mandatory to Implement Features for All OpenlD Providers described in Section 15.1 of OpenID Connect Core 1.0.

http://openid.net/certification/testing
http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

2.1.2 Implicit OpenID Provider
Implicit OpenID Providers implement the features needed by Implicit Relying Parties — those that use the features described in the OpenID
Connect Implicit Client Implementer’s Guide 1.0, excluding the Self-Issued OP features described in Section 4 (although the actual profile will be

based on OpenlID Connect Core 1.0). These features include the Mandatory to Implement Features for All OpenlID Providers described in Section
15.1 of OpenlID Connect Core 1.0.

2.1.3 Hybrid OpenlID Provider
Hybrid OpenID Providers implement the features needed by Hybrid Relying Parties — those that use the features described in Section 3.3 of
OpenlID Connect Core 1.0.

2.1.4 OpenlD Provider Publishing Configuration Information
OpenlD Providers Publishing Configuration Information publish their discovery information at provider configuration endpoints, as described in

Sections 3 and 4 of OpenID Connect Discovery 1.0. They also rotate their signing keys in the manner described in Section 10.1 of OpenlID
Connect Core 1.0.

2.1.5 Dynamic OpenID Provider
Dynamic OpenlID Providers implement the Mandatory to Implement Features for Dynamic OpenlID Providers described in Section 15.2 of OpenlID
Connect Core 1.0. Note that conforming to the Dynamic OpenlD Provider profile also means that the implementation will conform to the Basic

OpenlID Provider, Implicit OpenlD Provider, and OpenlID Provider Publishing Configuration Information profiles and implement the OP features of
the OpenlID Connect Discovery 1.0 and OpenlID Connect Dynamic Client Registration 1.0 specifications.

2.2 Relying Party Conformance Profiles

2.2.1 Basic Relying Party
Basic Relying Parties implement the features described in the OpenID Connect Basic Client Implementer’s Guide 1.0 (although the actual profile

will be based on OpenlD Connect Core 1.0).

2.2.2 Implicit Relying Party
Implicit Relying Parties implement the features described in the OpenID Connect Implicit Client Implementer’s Guide 1.0, excluding the Self-

Issued OP features described in Section 4 (although the actual profile will be based on OpenID Connect Core 1.0).

2.2.3 Hybrid Relying Party
Hybrid Relying Parties implement the features described in Section 3.3 of OpenID Connect Core 1.0.

2

http://openid.net/specs/openid-connect-implicit-1_0.html
http://openid.net/specs/openid-connect-implicit-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-implicit-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

2.2.4 Relying Party Using Configuration Information

OpenlD Relying Parties Using Configuration Information obtain info about the OpenlID Providers that they use from provider configuration
endpoints, as described in Sections 3 and 4 of OpenlD Connect Discovery 1.0. They also support OP signing key rotation in the manner described
in Section 10.1 of OpenlID Connect Core 1.0.

2.2.5 Dynamic Relying Party
Dynamic Relying Parties implement the features of the Basic Relying Party, Implicit Relying Party, and Relying Party Using Configuration
Information profiles. In addition to this, they implement the RP features of the OpenlD Connect Discovery 1.0 and OpenlD Connect Dynamic

Client Registration 1.0 specifications. It is recommended that Dynamic Relying Parties also seek certification as Relying Parties with Self-Issued

OpenlID Provider Support.

3. Conformance Profile Definitions

3.1 OpenlID Provider Conformance Profile Definitions
The following table specifies the protocol features included in the OpenlID Provider conformance profiles defined above. It also names the tests
in the OpenlID Provider test suite at http://op.certification.openid.net/ that are used to test those features.

| Conformance Feature Information OP Conformance Profiles
Dynami
Feature Name Conformance Test Name Test ID Basic Implicit | Hybrid = Config c

Response Type & Response Mode

Support code response_type Request with OP-Response-code y
response_type=code
Reject request without Authorization request OP-Response-Missing y y y
response_type missing the response_type
parameter
Support id_token response_type Request with OP-Response-id_token y
response_type=id_token
Support id_token token Request with OP-Response-id_token+token y
response_type response_type=id_token
token
Support code id_token Request with OP-Response-code+id_token y
response_type response_type=code

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://op.certification.openid.net/

Support code token response_type

Support code id_token token
response_type
ID Token
ID Token has iss claim
ID Token has sub claim
ID Token has aud claim
ID Token has iat claim
If left to itself is the OP signing the ID

Token and with what

Asymmetric ID Token signature with
RS256

ID Token has kid claim

ID Token has nonce when requested
for code flow

ID Token has auth_time claim when
max_age in request

Support max_age request parameter
when max age reached

Support max_age request parameter
when max age not reached

id_token

Request with
response_type=code token

Request with
response_type=code
id_token token

If left to itself is the OP
signing the ID Token and
with what

Asymmetric ID Token
signature with RS256

IDToken has kid

ID Token has nonce when
requested for code flow

Requesting ID Token with
max_age=1 seconds
Restriction

Requesting ID Token with
max_age=1 seconds
Restriction

Requesting ID Token with
max_age=1000 seconds
Restriction

OP-Response-code+token

OP-Response-code+id_token+token

IdToken.verify()
IdToken.verify()
IdToken.verify()
IdToken.verify()
OP-IDToken-Signature

OP-IDToken-RS256

OP-IDToken-kid

OP-IDToken-nonce-code

OP-IDToken-max_age=1

OP-IDToken-max_age=1

OP-IDToken-max_age=1000

< < < < <

y
unless

uses
none

y

< | ¥ | ¥ | < | <

< <X < < <

Unsecured ID Token signature with
none

ID Token has nonce when requested
for non-code flows

ID Token has at_hash when ID Token
and Access Token returned from
Authorization Endpoint

ID Token has c_hash when ID Token
and Authorization Code returned
from Authorization Endpoint

Userinfo Endpoint

Has UserInfo Endpoint

Userinfo Endpoint access with
header method

Userinfo Endpoint access with form-
encoded body method

UserlInfo has sub claim

Can provide signed Userinfo
response with RS256

nonce Request Parameter

Support requests without nonce
when using the code flow

Reject requests without nonce
unless using the code flow

Unsecured ID Token
signature with none

Request with nonce,
verifies it was returned in
id_token

ID Token has at_hash when
ID Token and Access Token
returned from
Authorization Endpoint

ID Token has c_hash when
ID Token and Authorization
Code returned from
Authorization Endpoint

Userinfo Endpoint Access
with GET and
bearer_header

Userinfo Endpoint Access
with POST and
bearer_header

Userinfo Endpoint Access
with POST and bearer_body

RP registers
userinfo_signed_response_
alg to signal that it wants
signed Userinfo returned

Login no nonce, code flow

Reject requests without
nonce unless using the
code flow

OP-IDToken-none

OP-IDToken-nonce-noncode

OP-IDToken-at_hash

OP-IDToken-c_hash

OP-UserInfo-Endpoint

OP-Userinfo-Header

OP-Userinfo-Body

OpenlDSchema.verify()

OP-Userinfo-RS256

OP-nonce-NoReqg-code

OP-nonce-NoReg-noncode

y if
uses
none

y if
uses
none

y if uses
none

scope Request Parameter

Support openid scope

Support profile scope
Support email scope
Support address scope
Support phone scope

Support scope value requesting all
basic claims

display Request Parameter
Support display value page
Support display value popup

prompt Request Parameter
Support prompt value login

Support prompt value none

Support prompt value none

Misc Request Parameters

Support max_age request parameter

Ignores not understood query
parameter in Authentication
Request

Support id_token_hint request
parameter

Userinfo Endpoint Access
with GET and
bearer_header

Scope Requesting profile
Claims

Scope Requesting email
Claims

Scope Requesting address
Claims

Scope Requesting phone
Claims

Scope Requesting all Claims

Request with display=page

Request with
display=popup

Request with prompt=login

Request with prompt=none
when not logged in

Request with prompt=none
when logged in

Requesting ID Token with
max_age=1 seconds
Restriction

Request with extra query
component

Using prompt=none with
user hint through

OP-UserInfo-Endpoint

OP-scope-profile
OP-scope-email
OP-scope-address
OP-scope-phone

OP-scope-All

OP-display-page
OP-display-popup

OP-prompt-login
OP-prompt-none-NotLoggedin

OP-prompt-none-LoggedIn

OP-IDToken-max_age=1

OP-Req-NotUnderstood

OP-Req-id_token_hint

no err

no err

no err

no err

no err

no err

no err

no err

SHOUL
D

no err

no err

no err

no err

no err

no err

no err

no err

SHOUL
D

no err

no err

no err

no err

no err

no err

no err

no err

SHOUL
D

Support login_hint request
parameter
Support ui_locales request
parameter
Support claims_locales request
parameter
Support acr_values request
parameter

OAuth Behaviors

OAuth state request value returned
in response

Reject second use of Authorization
Code

Second use of Authorization Code
revokes previously issued Access
Token

Reject second use of Authorization
Code

redirect_uri

Reject redirect_uri not matching a
registered redirect_uri

Reject request without redirect_uri
when multiple registered

Preserves query parameter in
redirect_uri

Preserves query parameter in
registered redirect_uris

id_token_hint

Providing login_hint
Providing ui_locales
Providing claims_locales

Providing acr_values

Trying to use access code
twice should result in an
error

Trying to use access code
twice should result in
revoking previous issued
tokens

Trying to use access code
twice with 30 seconds in
between must result in an
error

The sent redirect_uri does
not match the registered

Reject request without
redirect_uri when multiple
registered

Request with redirect_uri
with query component

Registration where a
redirect_uri has a query
component

OP-Req-login_hint
OP-Reqg-ui_locales
OP-Req-claims_locales

OP-Reqg-acr_values

VerifyState()

OP-OAuth-2nd

OP-OAuth-2nd-Revokes

OP-OAuth-2nd-30s

OP-redirect_uri-NotReg

OP-redirect_uri-Missing

OP-redirect_uri-Query

OP-redirect_uri-RegQuery

no err

no err

no err

no err

OAuth
MUST

OAuth
SHOUL

OAuth
MUST

no err

no err

no err

no err

no err

no err

no err

no err

OAuth
MUST

OAuth
SHOUL

OAuth
MUST

Reject redirect_uri when query
parameter does not match

Reject registration of redirect_uris
with fragment

Client Authentication

Support client authentication to
Token Endpoint using HTTP Basic
with POST

Support client authentication to
Token Endpoint using form-encoded
client credentials in POST body

Discovery

Publish openid-configuration
discovery information

Config has issuer

Discovered issuer matches openid-
configuration path prefix

Discovered issuer matches ID Token
iss value

Config has authorization_endpoint

Config has token_endpoint

Rejects redirect_uri when
Query Parameter Does Not
Match

Registration where a
redirect_uri has a fragment

Access token request with
client_secret_basic
authentication

Access token request with
client_secret_basic
authentication

Access token request with
client_secret_post
authentication

Access token request with
client_secret_post
authentication

Publish openid-
configuration discovery
information

OP-redirect_uri-BadQuery

OP-redirect_uri-RegFrag

OP-ClientAuth-Basic-Dynamic

OP-ClientAuth-Basic-Static

OP-ClientAuth-SecretPost-Dynamic

OP-ClientAuth-SecretPost-Static

OP-Discovery-Config

ProviderConfigurationResponse.veri
fy()

ProviderConfigurationResponse.veri
fy()

IdToken.verify()

CheckEndpoint()
CheckEndpoint()

Y

Y
unless

only
Implici
t

Config has userinfo_endpoint

Config has jwks_uri

Keys in OP JWKs well formed

Config has scopes_supported

Config has
response_types_supported

Config has subject_types_supported

Config has
id_token_signing_alg_values_suppor
ted

Config has claims_supported

All OP endpoints use https

Can Discover ldentifiers using E-Mail
Syntax

Support WebFinger discovery

Dynamic Client Registration

Config has registration_endpoint

Verify that jwks_uri and
claims_supported are
published

Keys in OP JWKs well
formed

Verify that jwks_uri and
claims_supported are
published

Can Discover ldentifiers
using E-Mail Syntax
Can Discover ldentifiers
using URL Syntax

Verify that
registration_endpoint is
published

CheckEndpoint()

OP-Discovery-Values

OP-Discovery-JWKs

CheckScopeSupport()

ProviderConfigurationResponse.veri
fy()
ProviderConfigurationResponse.veri
fy()

ProviderConfigurationResponse.veri
fy()

OP-Discovery-Values

VerifyOPEndpointsUseHTTPS()

OP-Discovery-WebFinger-Email

OP-Discovery-WebFinger

OP-Registration-Endpoint

y
unless

self-
issued
y
unless
only
none
y
unless
only
none

Y
Y

y
unless

only
none

Y

Enables dynamic registration

Support using Sector Identifier for
pairwise sub values

Displays logo_uri in login page

Displays policy_uri in login page

Displays tos_uri in login page
Uses keys registered with jwks value

Uses keys registered with jwks_uri
value

Reject Sector Identifier not
containing registered redirect_uri
values

Key Rollover

Can rollover OP signing key

Support RP signing key rollover

request_uri Request Parameter

Support request_uri request
parameter

Support request_uri request
parameter with unsecured request

Support request_uri request
parameter with signed request

request Request Parameter

Client registration Request

Registration with logo_uri

Registration with policy_uri

Registration with tos_uri

Uses Keys Registered with
jwks Value

Uses Keys Registered with
jwks_uri Value

Incorrect registration of
sector_identifier_uri

Can Rollover OP Signing Key

Request access token,
change RSA signing key and
request another access
token

Support request_uri
Request Parameter

Support request_uri
Request Parameter with
unSigned Request
Support request_uri
Request Parameter with
Signed Request

OP-Registration-Dynamic

OP-Registration-logo_uri

OP-Registration-policy_uri

OP-Registration-tos_uri
OP-Registration-jwks

OP-Registration-jwks_uri

OP-Registration-Sector-Bad

OP-Rollover-OP-Sig

OP-Rollover-RP-Sig

OP-request_uri-Support

OP-request_uri-Unsigned

OP-request_uri-Sig

10

SHOUL

SHOUL

SHOUL

SHOUL
D

no err

no err

SHOUL

SHOUL

SHOUL

SHOUL
D

no err

no err

SHOUL

SHOUL

SHOUL

SHOUL
D

no err

no err

no err

Support request request parameter Support request Request OP-request-Support no err no err no err
Parameter

Support request request parameter Support request Request OP-request-Unsigned no err no err no err

with unsecured request Parameter with unSigned
Request

claims Request Parameter

Support claims request parameter Claims Request with OP-claims-essential no err no err no err

Essential name Claim

3.2 Relying Party Conformance Profile Definitions
The following table specifies the protocol features included in the Relying Party conformance profiles defined above. A future version of this

table will also name the tests in the Relying Party test suite at http://rp.certification.openid.net/ that are used to test those features.

Conformance Feature Information

RP Conformance Profiles

Feature Name Basic Implicit Hybrid Config = Dynamic
Response Type & Resonse Mode
Can make request with code y
response_type
Can make request with id_token y
response_type
Can make request with id_token y
token response_type
ID Token
Reject ID Token with invalid iss claim y y y
Reject ID Token without sub claim y y y
Reject ID Token with invalid aud y y y
claim
Reject ID Token without iat claim y y y
Accept ID Token without kid claim if optional y y

only one JWK supplied in jwks_uri

11

http://rp.certification.openid.net/

Reject ID Token without kid claim if
multiple JWKs supplied in jwks_uri

Reject invalid at_hash when ID Token
and Access Token returned from
Authorization Endpoint

Reject invalid c_hash when ID Token
and Authorization Code returned
from Authorization Endpoint

Reject invalid asymmetric ID Token
signature with rs256

Can request and use unsecured ID
Token signature

Userinfo Endpoint
Accesses Userinfo Endpoint with
header method

Accesses Userinfo Endpoint with
form-encoded body method

Does not access Userinfo Endpoint
with query parameter method

Reject Userinfo with invalid sub claim

Can request and use signed Userinfo
response

nonce Request Parameter
Sends nonce request parameter
unless using code flow

Reject ID Token with invalid nonce
when nonce valid sent

scope Request Parameter

Scope openid present in all requests

optional

optional

optional

alt to
hdr
mthd

rejection rejection
allowed @ allowed

y y
y
y y
use
optional
y y
alt to alt to
hdr hdr
mthd mthd
y y
y y
use
optional
y y
y y
y y

12

use
optional

use
optional

Can request Userinfo claims with
scope values
Client Authentication

Can make Access Token request
using client_secret_basic client
authentication

Discovery
Uses WebFinger discovery
Can discover identifiers using e-mail

syntax

Can discover identifiers using URL
syntax

Uses openid-configuration discovery
information

Reject discovered issuer not
matching openid-configuration path
prefix

Reject ID Token with iss not matching
discovered issuer

Uses keys discovered with jwks_uri
value

Dynamic Client Registration
Uses dynamic registration
Registration has redirect_uris
Keys in RP JWKs well formed

Uses https for all endpoints unless
only using code flow

Key Rollover

Support OP signing key rollover

use use use
optional | optional | optional

y y y
y
y
y
y

y y y
y

13

Can rollover RP signing key y

request_uri Request Parameter

Can use request_uri request use
parameter with unsecured request optional
Can use request_uri request use
parameter with signed request optional

4. Possible Future Conformance Profiles

4.1 Possible Future OpenID Provider Conformance Profiles

4.1.1 Self-Issued OpenID Provider
Self-Issued OpenlID Providers implement the OP features described in Section 7 of OpenlD Connect Core 1.0. These OPs must also implement

the Mandatory to Implement Features for All OpenlID Providers described in Section 15.1 of OpenID Connect Core 1.0.

4.1.2 OpenlD Provider Using Form Post Response Mode
OpenlID Providers Using Form Post Response Mode implement the OAuth 2.0 Form Post Response Mode specification.

4.1.3 OpenlD Provider Issuing Refresh Tokens
OpenlID Providers Issuing Refresh Tokens issue and use Refresh Tokens in the manner described in Sections 11 and 12 of OpenID Connect Core
1.0.

4.1.4 Full OpenlID Provider
Full OpenlID Providers implement all six of the response_type values specified in Section 3 of OpenID Connect Core 1.0. They implement the

»n o u

“request”, “request_uri”, and “claims” request parameters. They support encrypted requests and encrypted responses. They support rotation
of RP and OP singing and encryption keys. They support both public and pairwise subject identifiers. They support offline access. They support
all the client authentication methods defined in Section 9. These OPs must also implement the Mandatory to Implement Features for All OpenID
Providers described in Section 15.1 of OpenID Connect Core 1.0.

14

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

4.2 Possible Future Relying Party Conformance Profiles

4.2.1 Self-Issued Relying Party
Self-Issued Relying Parties implement the RP features described in Section 7 of OpenlD Connect Core 1.0.

4.2.2 Relying Parties Using Form Post Response Mode
Relying Parties Using Form Post Response Mode implement the OAuth 2.0 Form Post Response Mode specification.

4.2.3 Relying Party Using Refresh Tokens
Relying Parties Using Refresh Tokens use Refresh Tokens in the manner described in Sections 11 and 12 of OpenID Connect Core 1.0.

4.2.4 Full Relying Party
Full Relying Parties implement all six of the response_type values specified in Section 3 of OpenlD Connect Core 1.0. They implement the

n o u

“request”, “request_uri”, and “claims” request parameters. They support encrypted requests and encrypted responses. They support rotation
of RP and OP singing and encryption keys. They can request offline access.

15

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

