
Comprehensive Overview
FAPI 1 and 2

Dr. Torsten Lodderstedt, yes.com

What is FAPI?

● A security and interoperability profile for OAuth for open banking and other
use cases with high security requirements

● Includes new specifications as required

Versions

● FAPI 1
○ Developed from 2016 onwards and used existing OpenID Connect security mechanisms to

patch OAuth security issues
○ Final specifications published
○ Adopted by UK OpenBanking, FDX, CDR, and Brasil

● FAPI 2
○ the next evolutionary step, simpler to use and with a broader scope
○ Based on analysis of most PSD 2 and other open banking initiatives as well as requirements

from eHealth and eGovernment
○ Adopted in yes open banking scheme (~1000 banks)

Main differences between FAPI 1 and FAPI 2

● Simpler to use
○ through new mechanisms (e.g. Pushed Authorization Requests/PAR, no ID Token as detached

signature required)
● Well-understood and better-defined security

○ FAPI 2 Baseline has same protection level as FAPI 1 Advanced
○ FAPI 2 Baseline fully protects against attacker model

● Broader interoperability
○ through coverage of rich authorization / consent management and secure access to APIs

● More versatile
○ through alternative mechanism for token replay protection (DPoP)

FAPI 2 Main Components

Pushed Authorization Requests (PAR)

Pushed Authorization Requests (PAR)
replace bespoke solutions like external
resources with references in scope/claims,
custom authorization request parameters, …

→ Simplified development through vendor
support and reliance on TLS (signed
requests possible)

→ Minimize data in front-channel to improve
security and increase robustness

POST /as/par HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0Mzo3Rmp..

response_type=code
&client_id=s6BhdRkqt3&state=af0ifjsldkj
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
<voluminous payload goes here>

HTTP/1.1 201 Created
Cache-Control: no-cache, no-store
Content-Type: application/json

{
 "request_uri":"urn:example:bwc4JK-ESC0w8acc1...",
 "expires_in": 90
}

Rich Authorization Requests (RAR)

Rich Authorization Requests (RAR)
enable fine-grained and complex consents.

● Structure of authorization details can
be defined as needed (e.g. per
application)

● Supports Multi-Consents

[
 {
 "type":"payment_initiation",
 "actions":[
 "initiate"
],
 "locations":[
 "https://yourbank.com.au/payments"
],
 "instructedAmount":{
 "currency":"AUD",
 "amount":"123.50"
 },
 "creditorName":"Merchant123",
 "creditorAccount":{
 "bsb":"123-456",
 "accountNumber":"1234567890"
 },
 "paymentDescription":"INV123456 Description123"
 }
]

Grant Management

Grant Management enables support for

● consent state synchronization
● consent revocation
● concurrent consents
● consent update & renewal
● Dashboards

Closely aligned with Australian requirements because it was started during AU
CDR consent proposal discussions.

Grant Management (request new grant id)

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0Mzo3Rm...

 response_type=code&
 client_id=s6BhdRkqt3
 &grant_management_action=create
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h...
 &authorization_details=%5B%7B%2...

HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token": "2YotnFZFEjr1zCsicMWpAA",
 "token_type": "example",
 "expires_in": 3600,
 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA",
 “grant_id”:”0a15a804-b5b4-4a45-9cd9-18b1a44f3383”,
 "authorization_details": [...
]
 }

(Pushed) Authorization Request) Token Response

Grant Management (API)

GET /grants/0a15a804-b5b4-4a45-9cd9-18b1a44f3383
Host: as.example-bank.com
Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store
Content-Type: application/json

{
 "authorization_details":[...]
}

DELETE /grants/0a15a804-b5b4-4a45-9cd9-18b1a44f3383
Host: as.example-bank.com
Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 204 No Content

Query Revoke

Grant Management (request use of certain grant)

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0Mzo3Rm...

 response_type=code&
 client_id=s6BhdRkqt3
 &grant_management_action=update
 &grant_id=0a15a804-b5b4-4a45-9cd9-18b1a44f3383
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h...
 &authorization_details=%5B%7B%2...

(Pushed) Authorization Request)

Use cases
● Renew consent (because it is

about to be expire)
● Update existing consent
● Ensure authorization process is

performed with same user
● Allows identification of user

(alternative login hint for CIBA)

PKCE POST /as/par HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0Mzo3Rmp..

response_type=code
&client_id=s6BhdRkqt3&state=af0ifjsldkj
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
&code_challenge_method=S256
&code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
...

POST /as/par HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0Mzo3Rmp..

grant_type=authorization_code
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
&code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

PKCE (RFC 7636) is used to detect
code replay and CSRF

Dynamically generated
cryptographically random key used to
bind transaction to browser/device

Replaces ID token as detached
signature

→ security check moved to AS

→ simple and robust

Feature Comparison
Topic FAPI 1 FAPI 2

Request Integrity Signed Request Objects PAR

CSRF state + s_hash in ID Token PKCE

Code Replay ID Token as detached signature or
JARM or PKCE

PKCE

Mix-Up iss claim in ID token or JARM iss response parameter

Access Token Replay mTLS mTLS or DPoP

Rich authorizations data not covered (custom solutions) PAR+RAR

Consent management not covered (custom solutions) Grant Management

Non-repudiation Signed Request Objects, ID Token as
detached signature
API not covered

JAR, JARM, Signed Introspection
Response, Simple HTTP Message
Integrity Protocol

B
a
s
e
l
I
n
e

A
d
v

FAPI 1 (lodging intent) vs FAPI 2 (PAR+RAR)

FAPI 2 Security

● FAPI 1 RW Security Level with simpler to implement features and less
reliance on client

● Increased interoperability (rich authorization + grant management)

=>
● Facilitates more secure implementations

Roadmap

● FAPI 2 Baseline
○ in first public draft for vote
○ implementers draft approval - June
○ underlying specifications (apart from GM) are stable specs with multiple implementations and

vendor support
● Grant management

○ first public draft for vote in May
○ implementers draft approval - July

● FAPI 2 Signing
○ Under development

● FAPI 2 Advanced
○ first implementers draft: dependent on signing

FAPI adoption in new ecosystems

● Reasons to use FAPI 1
○ If vendors in an ecosystem already support FAPI 1
○ FAPI 1 is a mature and widely supported security profile.

● Reasons to use FAPI 2
○ FAPI 2 is easier to implement
○ FAPI 2 covers complex authorization requests and grant lifecycle management aspects
○ FAPI 2 (as profile for API access authorization) better fits with OpenID Connect (for identity

claims provisioning) then FAPI 1

Ecosystems already using FAPI 1

● Benefit for adoption:
○ Simpler protocol and improved interoperability
○ Specification aligned with the latest OAuth best practices and security advice

● Incremental adoption of FAPI 2 modules possible:
○ Example: Australia adopted PAR with FAPI 1
○ PAR + RAR + Grant Management as full lifecycle consent management solution for FAPI 1

● Running both profile in parallel is possible
○ Would allow new clients to utilize the simpler protocol (and existing clients to migrate)

