
Self-Issued OP

~DIF and OIDF, or Decentralized 
identity and OIDC~

Kristina Yasuda, Microsoft Identity
Oliver Terbu, Consensus Mesh



1. Three work-streams
i.   Self-Issued OpenID Provider  (SIOP V2)
ii.  Presentation of W3C verifiable credentials using OIDC

 iii. Issuance of aggregated/client-bound claims from Claims 
Providers
2. Use-cases



1-i. Self-Issued OpenID Provider
(https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2-1_0.md) 

Specific model where users control their own 
OpenID Providers - extension of Chapter 7

Issues raised

- Different Trust Model between Self-Issued 
OP and RP from that of the rest of OIDC?

- Ad Hoc Registration is proposed
- Need to communicate inf about SIOP’s 

provider? iss=self-issued.me 
- consent, etc.
- will deep-dive on two

https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2-1_0.md


1-i. SIOP V2 Issues progress (1/2)
- Which SIOP/wallet under user’s possession to invoke? following options:

- 1. SIOP Chooser (https://bitbucket.org/openid/connect/issues/1212/siop-chooser)
■ a combination of 1/ a list of wallets (maintained by the trust framework); 2/ universal links to 

open wallet from the browser; and 3/ share sheet to choose between several wallets under the 
user's control. 

■ a current best solution that will work with different kind of wallets - native apps, PWAs, browser 
wallets. 

- 2. Each wallet pre-registering custom URL schema with RP 
■ NASCAR problem remains

Not the ideal solution, but the most viable without OS vendor’s collaboration.

https://bitbucket.org/openid/connect/issues/1212/siop-chooser


1-i. SIOP V2 Issues progress (1/2)

- Need for a user to prove control over the Self-Issued OP 

○ in addition to jwk thumbprint, allow DIDs to be used as holder identifier by 
checking if ID Token is signed by the keys in the DIDDoc controlled by the user 
- benefit of a key rotation

3.2. Self-Issued OpenID Provider Response
sub
REQUIRED. Subject identifier value, represented by a URI. When sub type 
is jkt, the value is the base64url encoded representation of the thumbprint of the 
key in the sub_jwk Claim. When sub type is did, the value is a decentralized 
identifier.



1-ii. Presentation of W3C verifiable credentials using OIDC

- Support request and presentation of Verifiable Credentials in ID Tokens and Userinfo responses

- Usable with all OpenID Connect Flows (SIOP, code, CIBA, …) 

- Leverage OpenID Connect as simple to use protocol for wallet integrations

- Leverage W3C verifiable credentials to existing OpenID Connect deployments



Current Spec work
- Request 

- via “claims” parameter
- Simply claims or credential type or credential type + claims (selective disclosure)

- Working on a draft that allows for both options to gather implementation feedback with a goal of making a decision on 
which option to adopt

- A) Embedding entire VP/VC in any format
- https://github.com/Sakurann/vp-token-spec
- ease of adoption in existing implementations

- B) VP Token as separate artifact returned alongside ID Token from the authorization endpoint
- https://github.com/awoie/vp-token-spec
- ‘clean’ technical solution

→ So that VPs are returned using same syntax in both options, will also define generic container to convey VPs - something 
like an array with objects containing a format identifier and the actual payload (+ potentially some additional metadata).

Will be contributed to the WG & call for adoption in coming week

https://github.com/Sakurann/vp-token-spec
https://github.com/awoie/vp-token-spec


A. vp_jwt Claim

parameters 
of ID Token



A. vp_ldp 
Claim parameters of 

ID Token



B. Separate artifact 
- ‘VP Token’

ID Token contains a `vp_hash`

‘VP Token’ contains an entire VP

`claims` parameter in the request



1-iii. Issuance of aggregated/client-bound claims from Claims

Specify the methods for an application to: 
- perform discovery for a Claims Provider
- register a client to a Claims Provider
- obtain claims from the Claims Provider
- return aggregated claims from Claims Providers to requesting clients



OpenID Connect has 3 claims models

1. Simple Claims
2. Aggregated Claims
3. Distributed Claims
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● C acts as an OP to D which is an RP in this context
● A&B acts as an OP to D which is an RP in this context
● E acts as a resource to D

Note: Credit to Nat Sakimura



Weakness of the Connect Core defined aggregated claims
● How to get a token from CP is hand-wavy. 
● No specified method to down scope the userinfo of the CP. 
● No way to provide a binding information between CP:sub and 

IdP:sub. 

https://bitbucket.org/openid/connect/src/master/openid-connect-claim
s-aggregation/openid-connect-claims-aggregation-1_0.md

OIDC Claims aggregation draft (WG adopted, issues 
filled in)

(Discussions to converge with Credential Provider draft - to be contributed)
https://github.com/mattrglobal/oidc-client-bound-assertions-spec

Note: Credit to Nat Sakimura

https://bitbucket.org/openid/connect/src/master/openid-connect-claims-aggregation/openid-connect-claims-aggregation-1_0.md
https://bitbucket.org/openid/connect/src/master/openid-connect-claims-aggregation/openid-connect-claims-aggregation-1_0.md
https://github.com/mattrglobal/oidc-client-bound-assertions-spec
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2. Use-cases
User’s having OPs that they control; users being able to receive and present verifiable 
credentials

-> “What problem it solves that current technology does not solve”

- Privacy preservation - no issuer call home at presentation.
- mDL (mobile Driving License defined as ISO/IEC 18013-5) 

- Addressing issuers-ceased-to-exist use case. 
- University issues student cards for alumni, which alumni can use regardless of 

university existence. (also cost saving because university potentially does not 
have to maintain alumni records in the registry)  -> Keio Universty

- Claims Aggregation & User-consent 
- NHS verifying doctors' eligibility using digital claims from several sources and 

saving patient treating time
- Also remote onboarding, getting app access and self-service recovery
- Other use-cases?



+ Bitbucket issues, PRs ☺

-  Weekly SIOP Special Topic Calls
- Alternating Pacific and Atlantic time-zone calls

-   OIDC AB/Connect WG calls
- Weekly Pacific time-zone calls and 
- Bi-weekly Atlantic time-zone calls


