
Self-Issued OP

~DIF and OIDF, or Decentralized
identity and OIDC~

Kristina Yasuda, Microsoft Identity
Oliver Terbu, Consensus Mesh

1. Three work-streams
i. Self-Issued OpenID Provider (SIOP V2)
ii. Presentation of W3C verifiable credentials using OIDC

 iii. Issuance of aggregated/client-bound claims from Claims
Providers
2. Use-cases

1-i. Self-Issued OpenID Provider
(https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2-1_0.md)

Specific model where users control their own
OpenID Providers - extension of Chapter 7

Issues raised

- Different Trust Model between Self-Issued
OP and RP from that of the rest of OIDC?

- Ad Hoc Registration is proposed
- Need to communicate inf about SIOP’s

provider? iss=self-issued.me
- consent, etc.
- will deep-dive on two

https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2-1_0.md

1-i. SIOP V2 Issues progress (1/2)
- Which SIOP/wallet under user’s possession to invoke? following options:

- 1. SIOP Chooser (https://bitbucket.org/openid/connect/issues/1212/siop-chooser)
■ a combination of 1/ a list of wallets (maintained by the trust framework); 2/ universal links to

open wallet from the browser; and 3/ share sheet to choose between several wallets under the
user's control.

■ a current best solution that will work with different kind of wallets - native apps, PWAs, browser
wallets.

- 2. Each wallet pre-registering custom URL schema with RP
■ NASCAR problem remains

Not the ideal solution, but the most viable without OS vendor’s collaboration.

https://bitbucket.org/openid/connect/issues/1212/siop-chooser

1-i. SIOP V2 Issues progress (1/2)

- Need for a user to prove control over the Self-Issued OP

○ in addition to jwk thumbprint, allow DIDs to be used as holder identifier by
checking if ID Token is signed by the keys in the DIDDoc controlled by the user
- benefit of a key rotation

3.2. Self-Issued OpenID Provider Response
sub
REQUIRED. Subject identifier value, represented by a URI. When sub type
is jkt, the value is the base64url encoded representation of the thumbprint of the
key in the sub_jwk Claim. When sub type is did, the value is a decentralized
identifier.

1-ii. Presentation of W3C verifiable credentials using OIDC

- Support request and presentation of Verifiable Credentials in ID Tokens and Userinfo responses

- Usable with all OpenID Connect Flows (SIOP, code, CIBA, …)

- Leverage OpenID Connect as simple to use protocol for wallet integrations

- Leverage W3C verifiable credentials to existing OpenID Connect deployments

Current Spec work
- Request

- via “claims” parameter
- Simply claims or credential type or credential type + claims (selective disclosure)

- Working on a draft that allows for both options to gather implementation feedback with a goal of making a decision on
which option to adopt

- A) Embedding entire VP/VC in any format
- https://github.com/Sakurann/vp-token-spec
- ease of adoption in existing implementations

- B) VP Token as separate artifact returned alongside ID Token from the authorization endpoint
- https://github.com/awoie/vp-token-spec
- ‘clean’ technical solution

→ So that VPs are returned using same syntax in both options, will also define generic container to convey VPs - something
like an array with objects containing a format identifier and the actual payload (+ potentially some additional metadata).

Will be contributed to the WG & call for adoption in coming week

https://github.com/Sakurann/vp-token-spec
https://github.com/awoie/vp-token-spec

A. vp_jwt Claim

parameters
of ID Token

A. vp_ldp
Claim parameters of

ID Token

B. Separate artifact
- ‘VP Token’

ID Token contains a `vp_hash`

‘VP Token’ contains an entire VP

`claims` parameter in the request

1-iii. Issuance of aggregated/client-bound claims from Claims

Specify the methods for an application to:
- perform discovery for a Claims Provider
- register a client to a Claims Provider
- obtain claims from the Claims Provider
- return aggregated claims from Claims Providers to requesting clients

OpenID Connect has 3 claims models

1. Simple Claims
2. Aggregated Claims
3. Distributed Claims

CP1

CP2 CP3

OP RP

instructs

a

b

c
d

a
b

c

1

2
3

B

A

E

C

D

● C acts as an OP to D which is an RP in this context
● A&B acts as an OP to D which is an RP in this context
● E acts as a resource to D

Note: Credit to Nat Sakimura

Weakness of the Connect Core defined aggregated claims
● How to get a token from CP is hand-wavy.
● No specified method to down scope the userinfo of the CP.
● No way to provide a binding information between CP:sub and

IdP:sub.

https://bitbucket.org/openid/connect/src/master/openid-connect-claim
s-aggregation/openid-connect-claims-aggregation-1_0.md

OIDC Claims aggregation draft (WG adopted, issues
filled in)

(Discussions to converge with Credential Provider draft - to be contributed)
https://github.com/mattrglobal/oidc-client-bound-assertions-spec

Note: Credit to Nat Sakimura

https://bitbucket.org/openid/connect/src/master/openid-connect-claims-aggregation/openid-connect-claims-aggregation-1_0.md
https://bitbucket.org/openid/connect/src/master/openid-connect-claims-aggregation/openid-connect-claims-aggregation-1_0.md
https://github.com/mattrglobal/oidc-client-bound-assertions-spec

OIDC flows

Relying Party
(RP)

OpenID
Provider (OP)

① Authn & Authz
Req

② User
Authn &
Authz

③

④ Token
Req

⑤

Authz Code

ID Token

Access Token

Authorization
Endpoint

Token
Endpoint

Authorization Code Flow

Note: Credit to @TakahikoKawasaki

RP OP
① Authn & Authz

Req

② User
Authn &
Authz

③

④ Token
Req

⑤

Authz Code

ID Token

Access Token

Authorization
Endpoint (OP)

Token
Endpoint (OP)

Claims Aggregation

Claims
Endpoint (belongs
to Claims Provider)

UserInfo
Endpoint

UserInfo
Endpoint (OP)

CP
(B)

Identity
Register

7. Signed claims
b

CP
(A)

Identity
Register

Client

5. Signed claims
a

IdP
(wallet etc.)

Identity
Register

c

a
b

Signed Claims
(Token)

C D

4. Give me a.

Token = Ta

6. Give me b.

Token = Tb

1. Give me claims {a,b}

8. Here are {a,b} with the user
identification claims c.

2.Is it ok to
Give {a,b}
to D?

3. I grant.

User

Note: Credit to Nat Sakimura

2. Use-cases
User’s having OPs that they control; users being able to receive and present verifiable
credentials

-> “What problem it solves that current technology does not solve”

- Privacy preservation - no issuer call home at presentation.
- mDL (mobile Driving License defined as ISO/IEC 18013-5)

- Addressing issuers-ceased-to-exist use case.
- University issues student cards for alumni, which alumni can use regardless of

university existence. (also cost saving because university potentially does not
have to maintain alumni records in the registry) -> Keio Universty

- Claims Aggregation & User-consent
- NHS verifying doctors' eligibility using digital claims from several sources and

saving patient treating time
- Also remote onboarding, getting app access and self-service recovery
- Other use-cases?

+ Bitbucket issues, PRs ☺

- Weekly SIOP Special Topic Calls
- Alternating Pacific and Atlantic time-zone calls

- OIDC AB/Connect WG calls
- Weekly Pacific time-zone calls and
- Bi-weekly Atlantic time-zone calls

